3.14.73 \(\int \frac {\sqrt {d+e x}}{(a^2+2 a b x+b^2 x^2)^3} \, dx\)

Optimal. Leaf size=218 \[ -\frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{3/2} (b d-a e)^{9/2}}+\frac {7 e^4 \sqrt {d+e x}}{128 b (a+b x) (b d-a e)^4}-\frac {7 e^3 \sqrt {d+e x}}{192 b (a+b x)^2 (b d-a e)^3}+\frac {7 e^2 \sqrt {d+e x}}{240 b (a+b x)^3 (b d-a e)^2}-\frac {e \sqrt {d+e x}}{40 b (a+b x)^4 (b d-a e)}-\frac {\sqrt {d+e x}}{5 b (a+b x)^5} \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 218, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {27, 47, 51, 63, 208} \begin {gather*} -\frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{3/2} (b d-a e)^{9/2}}+\frac {7 e^4 \sqrt {d+e x}}{128 b (a+b x) (b d-a e)^4}-\frac {7 e^3 \sqrt {d+e x}}{192 b (a+b x)^2 (b d-a e)^3}+\frac {7 e^2 \sqrt {d+e x}}{240 b (a+b x)^3 (b d-a e)^2}-\frac {e \sqrt {d+e x}}{40 b (a+b x)^4 (b d-a e)}-\frac {\sqrt {d+e x}}{5 b (a+b x)^5} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

-Sqrt[d + e*x]/(5*b*(a + b*x)^5) - (e*Sqrt[d + e*x])/(40*b*(b*d - a*e)*(a + b*x)^4) + (7*e^2*Sqrt[d + e*x])/(2
40*b*(b*d - a*e)^2*(a + b*x)^3) - (7*e^3*Sqrt[d + e*x])/(192*b*(b*d - a*e)^3*(a + b*x)^2) + (7*e^4*Sqrt[d + e*
x])/(128*b*(b*d - a*e)^4*(a + b*x)) - (7*e^5*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/(128*b^(3/2)*(b
*d - a*e)^(9/2))

Rule 27

Int[(u_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*Cancel[(b/2 + c*x)^(2*p)/c^p], x] /; Fr
eeQ[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\left (a^2+2 a b x+b^2 x^2\right )^3} \, dx &=\int \frac {\sqrt {d+e x}}{(a+b x)^6} \, dx\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}+\frac {e \int \frac {1}{(a+b x)^5 \sqrt {d+e x}} \, dx}{10 b}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}-\frac {\left (7 e^2\right ) \int \frac {1}{(a+b x)^4 \sqrt {d+e x}} \, dx}{80 b (b d-a e)}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}+\frac {7 e^2 \sqrt {d+e x}}{240 b (b d-a e)^2 (a+b x)^3}+\frac {\left (7 e^3\right ) \int \frac {1}{(a+b x)^3 \sqrt {d+e x}} \, dx}{96 b (b d-a e)^2}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}+\frac {7 e^2 \sqrt {d+e x}}{240 b (b d-a e)^2 (a+b x)^3}-\frac {7 e^3 \sqrt {d+e x}}{192 b (b d-a e)^3 (a+b x)^2}-\frac {\left (7 e^4\right ) \int \frac {1}{(a+b x)^2 \sqrt {d+e x}} \, dx}{128 b (b d-a e)^3}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}+\frac {7 e^2 \sqrt {d+e x}}{240 b (b d-a e)^2 (a+b x)^3}-\frac {7 e^3 \sqrt {d+e x}}{192 b (b d-a e)^3 (a+b x)^2}+\frac {7 e^4 \sqrt {d+e x}}{128 b (b d-a e)^4 (a+b x)}+\frac {\left (7 e^5\right ) \int \frac {1}{(a+b x) \sqrt {d+e x}} \, dx}{256 b (b d-a e)^4}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}+\frac {7 e^2 \sqrt {d+e x}}{240 b (b d-a e)^2 (a+b x)^3}-\frac {7 e^3 \sqrt {d+e x}}{192 b (b d-a e)^3 (a+b x)^2}+\frac {7 e^4 \sqrt {d+e x}}{128 b (b d-a e)^4 (a+b x)}+\frac {\left (7 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{a-\frac {b d}{e}+\frac {b x^2}{e}} \, dx,x,\sqrt {d+e x}\right )}{128 b (b d-a e)^4}\\ &=-\frac {\sqrt {d+e x}}{5 b (a+b x)^5}-\frac {e \sqrt {d+e x}}{40 b (b d-a e) (a+b x)^4}+\frac {7 e^2 \sqrt {d+e x}}{240 b (b d-a e)^2 (a+b x)^3}-\frac {7 e^3 \sqrt {d+e x}}{192 b (b d-a e)^3 (a+b x)^2}+\frac {7 e^4 \sqrt {d+e x}}{128 b (b d-a e)^4 (a+b x)}-\frac {7 e^5 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x}}{\sqrt {b d-a e}}\right )}{128 b^{3/2} (b d-a e)^{9/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.02, size = 52, normalized size = 0.24 \begin {gather*} \frac {2 e^5 (d+e x)^{3/2} \, _2F_1\left (\frac {3}{2},6;\frac {5}{2};-\frac {b (d+e x)}{a e-b d}\right )}{3 (a e-b d)^6} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(2*e^5*(d + e*x)^(3/2)*Hypergeometric2F1[3/2, 6, 5/2, -((b*(d + e*x))/(-(b*d) + a*e))])/(3*(-(b*d) + a*e)^6)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.70, size = 317, normalized size = 1.45 \begin {gather*} \frac {e^5 \sqrt {d+e x} \left (105 a^4 e^4-790 a^3 b e^3 (d+e x)-420 a^3 b d e^3+630 a^2 b^2 d^2 e^2-896 a^2 b^2 e^2 (d+e x)^2+2370 a^2 b^2 d e^2 (d+e x)-420 a b^3 d^3 e-2370 a b^3 d^2 e (d+e x)-490 a b^3 e (d+e x)^3+1792 a b^3 d e (d+e x)^2+105 b^4 d^4+790 b^4 d^3 (d+e x)-896 b^4 d^2 (d+e x)^2-105 b^4 (d+e x)^4+490 b^4 d (d+e x)^3\right )}{1920 b (b d-a e)^4 (-a e-b (d+e x)+b d)^5}-\frac {7 e^5 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {d+e x} \sqrt {a e-b d}}{b d-a e}\right )}{128 b^{3/2} (b d-a e)^4 \sqrt {a e-b d}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[d + e*x]/(a^2 + 2*a*b*x + b^2*x^2)^3,x]

[Out]

(e^5*Sqrt[d + e*x]*(105*b^4*d^4 - 420*a*b^3*d^3*e + 630*a^2*b^2*d^2*e^2 - 420*a^3*b*d*e^3 + 105*a^4*e^4 + 790*
b^4*d^3*(d + e*x) - 2370*a*b^3*d^2*e*(d + e*x) + 2370*a^2*b^2*d*e^2*(d + e*x) - 790*a^3*b*e^3*(d + e*x) - 896*
b^4*d^2*(d + e*x)^2 + 1792*a*b^3*d*e*(d + e*x)^2 - 896*a^2*b^2*e^2*(d + e*x)^2 + 490*b^4*d*(d + e*x)^3 - 490*a
*b^3*e*(d + e*x)^3 - 105*b^4*(d + e*x)^4))/(1920*b*(b*d - a*e)^4*(b*d - a*e - b*(d + e*x))^5) - (7*e^5*ArcTan[
(Sqrt[b]*Sqrt[-(b*d) + a*e]*Sqrt[d + e*x])/(b*d - a*e)])/(128*b^(3/2)*(b*d - a*e)^4*Sqrt[-(b*d) + a*e])

________________________________________________________________________________________

fricas [B]  time = 0.47, size = 1673, normalized size = 7.67

result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="fricas")

[Out]

[1/3840*(105*(b^5*e^5*x^5 + 5*a*b^4*e^5*x^4 + 10*a^2*b^3*e^5*x^3 + 10*a^3*b^2*e^5*x^2 + 5*a^4*b*e^5*x + a^5*e^
5)*sqrt(b^2*d - a*b*e)*log((b*e*x + 2*b*d - a*e - 2*sqrt(b^2*d - a*b*e)*sqrt(e*x + d))/(b*x + a)) - 2*(384*b^6
*d^5 - 1872*a*b^5*d^4*e + 3592*a^2*b^4*d^3*e^2 - 3314*a^3*b^3*d^2*e^3 + 1315*a^4*b^2*d*e^4 - 105*a^5*b*e^5 - 1
05*(b^6*d*e^4 - a*b^5*e^5)*x^4 + 70*(b^6*d^2*e^3 - 8*a*b^5*d*e^4 + 7*a^2*b^4*e^5)*x^3 - 14*(4*b^6*d^3*e^2 - 27
*a*b^5*d^2*e^3 + 87*a^2*b^4*d*e^4 - 64*a^3*b^3*e^5)*x^2 + 2*(24*b^6*d^4*e - 152*a*b^5*d^3*e^2 + 417*a^2*b^4*d^
2*e^3 - 684*a^3*b^3*d*e^4 + 395*a^4*b^2*e^5)*x)*sqrt(e*x + d))/(a^5*b^7*d^5 - 5*a^6*b^6*d^4*e + 10*a^7*b^5*d^3
*e^2 - 10*a^8*b^4*d^2*e^3 + 5*a^9*b^3*d*e^4 - a^10*b^2*e^5 + (b^12*d^5 - 5*a*b^11*d^4*e + 10*a^2*b^10*d^3*e^2
- 10*a^3*b^9*d^2*e^3 + 5*a^4*b^8*d*e^4 - a^5*b^7*e^5)*x^5 + 5*(a*b^11*d^5 - 5*a^2*b^10*d^4*e + 10*a^3*b^9*d^3*
e^2 - 10*a^4*b^8*d^2*e^3 + 5*a^5*b^7*d*e^4 - a^6*b^6*e^5)*x^4 + 10*(a^2*b^10*d^5 - 5*a^3*b^9*d^4*e + 10*a^4*b^
8*d^3*e^2 - 10*a^5*b^7*d^2*e^3 + 5*a^6*b^6*d*e^4 - a^7*b^5*e^5)*x^3 + 10*(a^3*b^9*d^5 - 5*a^4*b^8*d^4*e + 10*a
^5*b^7*d^3*e^2 - 10*a^6*b^6*d^2*e^3 + 5*a^7*b^5*d*e^4 - a^8*b^4*e^5)*x^2 + 5*(a^4*b^8*d^5 - 5*a^5*b^7*d^4*e +
10*a^6*b^6*d^3*e^2 - 10*a^7*b^5*d^2*e^3 + 5*a^8*b^4*d*e^4 - a^9*b^3*e^5)*x), 1/1920*(105*(b^5*e^5*x^5 + 5*a*b^
4*e^5*x^4 + 10*a^2*b^3*e^5*x^3 + 10*a^3*b^2*e^5*x^2 + 5*a^4*b*e^5*x + a^5*e^5)*sqrt(-b^2*d + a*b*e)*arctan(sqr
t(-b^2*d + a*b*e)*sqrt(e*x + d)/(b*e*x + b*d)) - (384*b^6*d^5 - 1872*a*b^5*d^4*e + 3592*a^2*b^4*d^3*e^2 - 3314
*a^3*b^3*d^2*e^3 + 1315*a^4*b^2*d*e^4 - 105*a^5*b*e^5 - 105*(b^6*d*e^4 - a*b^5*e^5)*x^4 + 70*(b^6*d^2*e^3 - 8*
a*b^5*d*e^4 + 7*a^2*b^4*e^5)*x^3 - 14*(4*b^6*d^3*e^2 - 27*a*b^5*d^2*e^3 + 87*a^2*b^4*d*e^4 - 64*a^3*b^3*e^5)*x
^2 + 2*(24*b^6*d^4*e - 152*a*b^5*d^3*e^2 + 417*a^2*b^4*d^2*e^3 - 684*a^3*b^3*d*e^4 + 395*a^4*b^2*e^5)*x)*sqrt(
e*x + d))/(a^5*b^7*d^5 - 5*a^6*b^6*d^4*e + 10*a^7*b^5*d^3*e^2 - 10*a^8*b^4*d^2*e^3 + 5*a^9*b^3*d*e^4 - a^10*b^
2*e^5 + (b^12*d^5 - 5*a*b^11*d^4*e + 10*a^2*b^10*d^3*e^2 - 10*a^3*b^9*d^2*e^3 + 5*a^4*b^8*d*e^4 - a^5*b^7*e^5)
*x^5 + 5*(a*b^11*d^5 - 5*a^2*b^10*d^4*e + 10*a^3*b^9*d^3*e^2 - 10*a^4*b^8*d^2*e^3 + 5*a^5*b^7*d*e^4 - a^6*b^6*
e^5)*x^4 + 10*(a^2*b^10*d^5 - 5*a^3*b^9*d^4*e + 10*a^4*b^8*d^3*e^2 - 10*a^5*b^7*d^2*e^3 + 5*a^6*b^6*d*e^4 - a^
7*b^5*e^5)*x^3 + 10*(a^3*b^9*d^5 - 5*a^4*b^8*d^4*e + 10*a^5*b^7*d^3*e^2 - 10*a^6*b^6*d^2*e^3 + 5*a^7*b^5*d*e^4
 - a^8*b^4*e^5)*x^2 + 5*(a^4*b^8*d^5 - 5*a^5*b^7*d^4*e + 10*a^6*b^6*d^3*e^2 - 10*a^7*b^5*d^2*e^3 + 5*a^8*b^4*d
*e^4 - a^9*b^3*e^5)*x)]

________________________________________________________________________________________

giac [B]  time = 0.22, size = 432, normalized size = 1.98 \begin {gather*} \frac {7 \, \arctan \left (\frac {\sqrt {x e + d} b}{\sqrt {-b^{2} d + a b e}}\right ) e^{5}}{128 \, {\left (b^{5} d^{4} - 4 \, a b^{4} d^{3} e + 6 \, a^{2} b^{3} d^{2} e^{2} - 4 \, a^{3} b^{2} d e^{3} + a^{4} b e^{4}\right )} \sqrt {-b^{2} d + a b e}} + \frac {105 \, {\left (x e + d\right )}^{\frac {9}{2}} b^{4} e^{5} - 490 \, {\left (x e + d\right )}^{\frac {7}{2}} b^{4} d e^{5} + 896 \, {\left (x e + d\right )}^{\frac {5}{2}} b^{4} d^{2} e^{5} - 790 \, {\left (x e + d\right )}^{\frac {3}{2}} b^{4} d^{3} e^{5} - 105 \, \sqrt {x e + d} b^{4} d^{4} e^{5} + 490 \, {\left (x e + d\right )}^{\frac {7}{2}} a b^{3} e^{6} - 1792 \, {\left (x e + d\right )}^{\frac {5}{2}} a b^{3} d e^{6} + 2370 \, {\left (x e + d\right )}^{\frac {3}{2}} a b^{3} d^{2} e^{6} + 420 \, \sqrt {x e + d} a b^{3} d^{3} e^{6} + 896 \, {\left (x e + d\right )}^{\frac {5}{2}} a^{2} b^{2} e^{7} - 2370 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{2} b^{2} d e^{7} - 630 \, \sqrt {x e + d} a^{2} b^{2} d^{2} e^{7} + 790 \, {\left (x e + d\right )}^{\frac {3}{2}} a^{3} b e^{8} + 420 \, \sqrt {x e + d} a^{3} b d e^{8} - 105 \, \sqrt {x e + d} a^{4} e^{9}}{1920 \, {\left (b^{5} d^{4} - 4 \, a b^{4} d^{3} e + 6 \, a^{2} b^{3} d^{2} e^{2} - 4 \, a^{3} b^{2} d e^{3} + a^{4} b e^{4}\right )} {\left ({\left (x e + d\right )} b - b d + a e\right )}^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="giac")

[Out]

7/128*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))*e^5/((b^5*d^4 - 4*a*b^4*d^3*e + 6*a^2*b^3*d^2*e^2 - 4*a^3*b
^2*d*e^3 + a^4*b*e^4)*sqrt(-b^2*d + a*b*e)) + 1/1920*(105*(x*e + d)^(9/2)*b^4*e^5 - 490*(x*e + d)^(7/2)*b^4*d*
e^5 + 896*(x*e + d)^(5/2)*b^4*d^2*e^5 - 790*(x*e + d)^(3/2)*b^4*d^3*e^5 - 105*sqrt(x*e + d)*b^4*d^4*e^5 + 490*
(x*e + d)^(7/2)*a*b^3*e^6 - 1792*(x*e + d)^(5/2)*a*b^3*d*e^6 + 2370*(x*e + d)^(3/2)*a*b^3*d^2*e^6 + 420*sqrt(x
*e + d)*a*b^3*d^3*e^6 + 896*(x*e + d)^(5/2)*a^2*b^2*e^7 - 2370*(x*e + d)^(3/2)*a^2*b^2*d*e^7 - 630*sqrt(x*e +
d)*a^2*b^2*d^2*e^7 + 790*(x*e + d)^(3/2)*a^3*b*e^8 + 420*sqrt(x*e + d)*a^3*b*d*e^8 - 105*sqrt(x*e + d)*a^4*e^9
)/((b^5*d^4 - 4*a*b^4*d^3*e + 6*a^2*b^3*d^2*e^2 - 4*a^3*b^2*d*e^3 + a^4*b*e^4)*((x*e + d)*b - b*d + a*e)^5)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 337, normalized size = 1.55 \begin {gather*} \frac {7 \left (e x +d \right )^{\frac {9}{2}} b^{3} e^{5}}{128 \left (b e x +a e \right )^{5} \left (a^{4} e^{4}-4 a^{3} b d \,e^{3}+6 a^{2} b^{2} d^{2} e^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}\right )}+\frac {49 \left (e x +d \right )^{\frac {7}{2}} b^{2} e^{5}}{192 \left (b e x +a e \right )^{5} \left (a^{3} e^{3}-3 a^{2} b d \,e^{2}+3 a \,b^{2} d^{2} e -b^{3} d^{3}\right )}+\frac {7 \left (e x +d \right )^{\frac {5}{2}} b \,e^{5}}{15 \left (b e x +a e \right )^{5} \left (a^{2} e^{2}-2 a b d e +b^{2} d^{2}\right )}+\frac {7 e^{5} \arctan \left (\frac {\sqrt {e x +d}\, b}{\sqrt {\left (a e -b d \right ) b}}\right )}{128 \left (a^{4} e^{4}-4 a^{3} b d \,e^{3}+6 a^{2} b^{2} d^{2} e^{2}-4 a \,b^{3} d^{3} e +b^{4} d^{4}\right ) \sqrt {\left (a e -b d \right ) b}\, b}+\frac {79 \left (e x +d \right )^{\frac {3}{2}} e^{5}}{192 \left (b e x +a e \right )^{5} \left (a e -b d \right )}-\frac {7 \sqrt {e x +d}\, e^{5}}{128 \left (b e x +a e \right )^{5} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^3,x)

[Out]

7/128*e^5/(b*e*x+a*e)^5*b^3/(a^4*e^4-4*a^3*b*d*e^3+6*a^2*b^2*d^2*e^2-4*a*b^3*d^3*e+b^4*d^4)*(e*x+d)^(9/2)+49/1
92*e^5/(b*e*x+a*e)^5/(a^3*e^3-3*a^2*b*d*e^2+3*a*b^2*d^2*e-b^3*d^3)*b^2*(e*x+d)^(7/2)+7/15*e^5/(b*e*x+a*e)^5*b/
(a^2*e^2-2*a*b*d*e+b^2*d^2)*(e*x+d)^(5/2)+79/192*e^5/(b*e*x+a*e)^5/(a*e-b*d)*(e*x+d)^(3/2)-7/128*e^5/(b*e*x+a*
e)^5/b*(e*x+d)^(1/2)+7/128*e^5/b/(a^4*e^4-4*a^3*b*d*e^3+6*a^2*b^2*d^2*e^2-4*a*b^3*d^3*e+b^4*d^4)/((a*e-b*d)*b)
^(1/2)*arctan((e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2)*b)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(b^2*x^2+2*a*b*x+a^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*e-b*d>0)', see `assume?` for
 more details)Is a*e-b*d positive or negative?

________________________________________________________________________________________

mupad [B]  time = 0.70, size = 401, normalized size = 1.84 \begin {gather*} \frac {\frac {79\,e^5\,{\left (d+e\,x\right )}^{3/2}}{192\,\left (a\,e-b\,d\right )}-\frac {7\,e^5\,\sqrt {d+e\,x}}{128\,b}+\frac {49\,b^2\,e^5\,{\left (d+e\,x\right )}^{7/2}}{192\,{\left (a\,e-b\,d\right )}^3}+\frac {7\,b^3\,e^5\,{\left (d+e\,x\right )}^{9/2}}{128\,{\left (a\,e-b\,d\right )}^4}+\frac {7\,b\,e^5\,{\left (d+e\,x\right )}^{5/2}}{15\,{\left (a\,e-b\,d\right )}^2}}{\left (d+e\,x\right )\,\left (5\,a^4\,b\,e^4-20\,a^3\,b^2\,d\,e^3+30\,a^2\,b^3\,d^2\,e^2-20\,a\,b^4\,d^3\,e+5\,b^5\,d^4\right )-{\left (d+e\,x\right )}^2\,\left (-10\,a^3\,b^2\,e^3+30\,a^2\,b^3\,d\,e^2-30\,a\,b^4\,d^2\,e+10\,b^5\,d^3\right )+b^5\,{\left (d+e\,x\right )}^5-\left (5\,b^5\,d-5\,a\,b^4\,e\right )\,{\left (d+e\,x\right )}^4+a^5\,e^5-b^5\,d^5+{\left (d+e\,x\right )}^3\,\left (10\,a^2\,b^3\,e^2-20\,a\,b^4\,d\,e+10\,b^5\,d^2\right )-10\,a^2\,b^3\,d^3\,e^2+10\,a^3\,b^2\,d^2\,e^3+5\,a\,b^4\,d^4\,e-5\,a^4\,b\,d\,e^4}+\frac {7\,e^5\,\mathrm {atan}\left (\frac {\sqrt {b}\,\sqrt {d+e\,x}}{\sqrt {a\,e-b\,d}}\right )}{128\,b^{3/2}\,{\left (a\,e-b\,d\right )}^{9/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(a^2 + b^2*x^2 + 2*a*b*x)^3,x)

[Out]

((79*e^5*(d + e*x)^(3/2))/(192*(a*e - b*d)) - (7*e^5*(d + e*x)^(1/2))/(128*b) + (49*b^2*e^5*(d + e*x)^(7/2))/(
192*(a*e - b*d)^3) + (7*b^3*e^5*(d + e*x)^(9/2))/(128*(a*e - b*d)^4) + (7*b*e^5*(d + e*x)^(5/2))/(15*(a*e - b*
d)^2))/((d + e*x)*(5*b^5*d^4 + 5*a^4*b*e^4 - 20*a^3*b^2*d*e^3 + 30*a^2*b^3*d^2*e^2 - 20*a*b^4*d^3*e) - (d + e*
x)^2*(10*b^5*d^3 - 10*a^3*b^2*e^3 + 30*a^2*b^3*d*e^2 - 30*a*b^4*d^2*e) + b^5*(d + e*x)^5 - (5*b^5*d - 5*a*b^4*
e)*(d + e*x)^4 + a^5*e^5 - b^5*d^5 + (d + e*x)^3*(10*b^5*d^2 + 10*a^2*b^3*e^2 - 20*a*b^4*d*e) - 10*a^2*b^3*d^3
*e^2 + 10*a^3*b^2*d^2*e^3 + 5*a*b^4*d^4*e - 5*a^4*b*d*e^4) + (7*e^5*atan((b^(1/2)*(d + e*x)^(1/2))/(a*e - b*d)
^(1/2)))/(128*b^(3/2)*(a*e - b*d)^(9/2))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(b**2*x**2+2*a*b*x+a**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________